Trends in temperate tree growth: Stable growing season responses and changing winter climate responses

Jill E. Harvey^{1*}, Marko Smiljanić¹, Tobias Scharnweber¹, Allan Buras², Anna Cedro³, Roberto Cruz-García¹, Igor Drobyshev⁴, Karolina Janecka¹, Aris Jansons⁵, Ryszard Kaczka⁶, Marcin Klisz⁷, Alar Läänelaid⁸, Roberts Matison⁵, Lena Muffler^{1,9}, Kristina Sohar⁸, Barbara Spyt⁶, Juliane Stolz¹⁰, Ernst van der Maaten¹⁰, Marieke van der Maaten-Theunissen¹⁰, Adomas Vitas¹¹, Robert Weigel^{1,9}, Jürgen Kreyling¹, Martin Wilmking¹

¹Institute of Botany and Landscape Ecology, University of Greifswald, Germany

²Department of Ecology and Ecosystem Management, Technische Universität München, Germany

³Faculty of Geosciences, Szczecin University, Poland

⁴Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sweden

⁵Latvian State Forest Research Institute, Latvia

⁶Faculty of Earth Sciences, University of Silesia, Poland

⁷Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Poland

⁸Institute of Ecology and Earth Sciences, University of Tartu, Estonia

⁹Albrecht von Hoaller Institute of Plant Sciences, University of Goettingen, Germany

¹⁰Chair of Forest Growth and Woody Biomass Production, TU Dresden, Germany

¹¹Centre of Environmental Research, Vytautas Magnus University, Lithuania

*Corresponding author: Jill E. Harvey, harveyj@uni-greifswald.de, Institute of Botany and Landscape Ecology, University of Greifswald, Germany, Tel: +49 0173 4717432

Abstract

The role of future forests in global biogeochemical cycles will greatly depend on how different tree species respond to climate. Understanding the response of forest growth to climate change requires a sound understanding of the temporal and spatial patterns of the seasonal climatic influence on the growth of common tree species. We present a new network of 321 tree-ring width chronologies from four common tree species (Quercus robur, Q. patraea, Pinus sylvestris and Fagus sylvatica) in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). We identified the major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales to assess whether their effects change from 1943 to 2002. Our analysis documents that radial tree growth is generally dominated by genus-specific climate parameters where the influence of growing season climate is generally stable through time. We also documented changes in the influence of winter climate variables over the last decades for all species examined. Among much of the study region, we found a decreasing influence of winter climate on deciduous tree growth and an increasing influence of winter climate on Scots pine growth. We used the unstable winter climate growth responses to guide a descriptive application of spatial segregation analysis to identify sites significantly aggregated based on their unstable response to winter climate parameters. The findings presented here highlight the sensitivity of observed biological responses to climate change especially in the context of seasonally non-uniform responses to climate change.